
Reprinted From 

Physics of High Enm'gy Density 

© 1971, XLVIII Corso 

Academic P7'es8 Inc. - New Y01'k 

'-if l 7-S- 0 (lf7)) 

Shock Waves in Condensed Media n. 
G. E. DUVALL 

Shock Dynamics Laborat01'y, Department of Physics 
Washington State University, Pullman, Wash. 

DtJVA , -GE 71 

In this entire discussion we focus attention on a simple thought experi­
ment. We consider a half-space with free smface normal to the x-axis and 
located at x = O. The medium of interest lies in the region x> 0 or x < O. 
A uniform pressme is applied to the smface or the smface is given an arbitrary 
velocity at an arbitrary time, and we inquire about the state of the medium 
at later times, This apparently restrictive model is in reasonable accord with 
the geometry and physics of most significant experiments and leads to a great 
variety of interesting problems. 

1. - Basic shock relations. 

The continuum differential equations of flow, independent of material 
properties, are, for one-dimens~onal plane flow: 

(1) 

(2) 

(3) 

ae/at + aeu/ax = 0 , 

e du/dt = e au/at + e~t au/ax = - ap lax , 

dE/dt = -p dV/dt; 

where t is t ime, x is Eulerian space co-ordinate, e is density, u is particle or 
mass velocity, E is internal energy, and p is compressive stress in the x-direc­
tion, including all dynamic forces due to viscosity, stress relaxation, etc. 

Application of a pressme to the smface of a half-space produces a region 
of change propagating out from the smface. If we suppose that a very long 
time has elapsed since the driving pressme was first applied at the free sm­
face, and that pressme has been held at a constant value, Pl, then the region 
of change in the resulting flow may be supposed far removed from the driving 
smface. If the half-space :fills the region x> 0, we may shift the origin of 
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co-ordinates to a point deep within the material and suppose that the region 
of change connects a uniform undisturbed state at IV = + 00 to a uniform 
compressed state at IV = - 00. To implement this model, we seek solutions 
of eqs. (1)-(3) of the form 

e = e(~) , u = u(~) , P = p(~) , E = E(~) , V = V(~) , 

where ~= IV-Dt and D is a constant propagation velocity. Let the values 
of variables in the undisturbed state be designated by subscript « 0» and 
those in the uniform state at IV = - 00 by subscript « 1 ». Then eqs. (1)-(3) 
can be integrated to yield the relations 

(4) 

(5) 

(6) 

e(D-u) = eo(D-uo) , 

P-Po = (!o(D-UO)2(VO- V) = eo(D-uo)(u-uo) , 

E-Eo = !(p + Po)(Vo- V). 

Substitution of the final-state variables into eqs . (4)-(6) yields the jump con­
ditions. They are particularly useful in the forms: 

(7) 

(8) 

(9) 

(!ohh = 1- (ul-uo)!(D-uo) , 

(D-uo)2 = V~[(Pl-PO)!(Vo- Vl)] , 

El-Eo = !(Pl + Po)(Vo- Vl ) . 

The undisturbed medium will usually be at rest. In deriving eqs. (4)-(9) it 
has been assumed to have a velocity uo. The generality obtained by this 
assumption will at times be useful. 

Any travelling wave which connects end states « 1» and « 0 » and which 
satisfies eqs. (7)-(9) is called a shock wave. The locus of states (Pl, Vl) which 

a ) 

P" v, 
u" E, 

b) 

Fig. 1. - a) Forward.facing shock wave, D-uo > o. 
b) Backward-facing shock wave, D-uo< o. 

satisfy eqs. (7)-(9) is called 
the « Rankine-Hugoniot (p, V) 
curve centered at (Po, Vo) » or, 
more simply, the « Hugoniot » 
or « R-H curve ». It is also 
sometimes called the « dynamic 
adiabat» or « shock adiabat ». 
When the root of eq. (8) is 
taken, a duality of sign ap-
pears . If D-uo>O the com­
pressed state lies to the left, 
the undisturbed state to the 
right, and the disturbance is a 
« forward-facing shock wave». 


